ThmDex – An index of mathematical definitions, results, and conjectures.
F10890
Formulation 0
Let $[a, b] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) \begin{equation} a < b \end{equation}
(ii) $f : [a, b] \to \mathbb{R}$ is a D5231: Standard-continuous real function on $[a, b]$
(iii) $f$ is a D5614: Differentiable real function at $x_0 \in (a, b)$
(iv) One of the following statements is true
(a) \begin{equation} \exists \, r > 0 : \forall \, x \in (x_0 - r, x_0 + r) : f(x_0) \geq f(x) \end{equation}
(b) \begin{equation} \exists \, r > 0 : \forall \, x \in (x_0 - r, x_0 + r) : f(x_0) \leq f(x) \end{equation}
Then \begin{equation} f'(x_0) = 0 \end{equation}