ThmDex – An index of mathematical definitions, results, and conjectures.
Basic real interior extremum theorem
Formulation 0
Let $[a, b] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) \begin{equation} a < b \end{equation}
(ii) $f : [a, b] \to \mathbb{R}$ is a D5231: Standard-continuous real function on $[a, b]$
(iii) $f$ is a D5614: Differentiable real function at $x_0 \in (a, b)$
(iv) One of the following statements is true
(a) \begin{equation} \exists \, r > 0 : \forall \, x \in (x_0 - r, x_0 + r) : f(x_0) \geq f(x) \end{equation}
(b) \begin{equation} \exists \, r > 0 : \forall \, x \in (x_0 - r, x_0 + r) : f(x_0) \leq f(x) \end{equation}
Then \begin{equation} f'(x_0) = 0 \end{equation}
Proofs
Proof 0
Let $[a, b] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) \begin{equation} a < b \end{equation}
(ii) $f : [a, b] \to \mathbb{R}$ is a D5231: Standard-continuous real function on $[a, b]$
(iii) $f$ is a D5614: Differentiable real function at $x_0 \in (a, b)$
(iv) One of the following statements is true
(a) \begin{equation} \exists \, r > 0 : \forall \, x \in (x_0 - r, x_0 + r) : f(x_0) \geq f(x) \end{equation}
(b) \begin{equation} \exists \, r > 0 : \forall \, x \in (x_0 - r, x_0 + r) : f(x_0) \leq f(x) \end{equation}
Without loss of generality, we may assume that $x_0$ is a local maximum for $f$.

Since $f$ is differentiable at $x_0$, then the limits \begin{equation} \lim_{x \nearrow x_0} \frac{f(x) - f(x_0)}{x - x_0}, \quad \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}, \quad \lim_{x \searrow x_0} \frac{f(x) - f(x_0)}{x - x_0} \end{equation} all exist and we have \begin{equation} \lim_{x \nearrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \searrow x_0} \frac{f(x) - f(x_0)}{x - x_0} \end{equation} Since $x_0$ is a local maximum for $f$, then for every $x \in (x_0 - r, x_0)$ we have \begin{equation} \frac{f(x) - f(x_0)}{x - x_0} \geq 0 \end{equation} By isotonicity of limits, we then we have \begin{equation} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \nearrow x_0} \frac{f(x) - f(x_0)}{x - x_0} \geq 0 \end{equation} Reasoning symmetrically, we deduce also that \begin{equation} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \searrow x_0} \frac{f(x) - f(x_0)}{x - x_0} \leq 0 \end{equation} Applying R1043: Equality from two inequalities for real numbers, we can then conclude \begin{equation} f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0 \end{equation} $\square$