ThmDex – An index of mathematical definitions, results, and conjectures.
Cofactor partition for a 2-by-2 complex square matrix
Formulation 0
Let $A \in \mathbb{C}^{2 \times 2}$ be a D6159: Complex square matrix such that
(ii) $C_{i, j}$ is a D6183: Complex square matrix cofactor for $A$ with respect to $(i, j)$ for each $i, j \in \{ 1, 2 \}$
Let $i, j \in \{ 1, 2 \}$ each be a D5094: Positive integer.
Then
(1) \begin{equation} i = j \quad \implies \quad A_{i, 1} C_{j, 1} + A_{i, 2} C_{j, 2} = \text{Det} A \end{equation}
(2) \begin{equation} i = j \quad \implies \quad A_{1, i} C_{1, j} + A_{2, i} C_{2, j} = \text{Det} A \end{equation}
(3) \begin{equation} i \neq j \quad \implies \quad A_{i, 1} C_{j, 1} + A_{i, 2} C_{j, 2} = 0 \end{equation}
(4) \begin{equation} i \neq j \quad \implies \quad A_{1, i} C_{1, j} + A_{2, i} C_{2, j} = 0 \end{equation}
Proofs
Proof 0
Let $A \in \mathbb{C}^{2 \times 2}$ be a D6159: Complex square matrix such that
(ii) $C_{i, j}$ is a D6183: Complex square matrix cofactor for $A$ with respect to $(i, j)$ for each $i, j \in \{ 1, 2 \}$
Let $i, j \in \{ 1, 2 \}$ each be a D5094: Positive integer.
Suppose that \begin{equation} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{equation} for some complex numbers $a, b, c, d \in \mathbb{C}$. Result R5518: Complex arithmetic expression for the determinant of a 2-by-2 complex square matrix shows that \begin{equation} \text{Det} A = a d - b c \end{equation} Our goal is to show that the cofactor partitions equal this value. To this end, we have the cofactors \begin{equation} \begin{split} C_{1, 1} & = (-1)^{1 + 1} \begin{bmatrix} d \end{bmatrix} = d \\ C_{1, 2} & = (-1)^{1 + 2} \begin{bmatrix} c \end{bmatrix} = -c \\ C_{2, 1} & = (-1)^{2 + 1} \begin{bmatrix} b \end{bmatrix} = -b \\ C_{2, 2} & = (-1)^{2 + 2} \begin{bmatrix} a \end{bmatrix} = a \\ \end{split} \end{equation} and the values \begin{equation} \begin{split} A_{1, 1} & = a \\ A_{1, 2} & = b \\ A_{2, 1} & = c \\ A_{2, 2} & = d \\ \end{split} \end{equation} Let's go through each case for all possible values of $i, j \in \{ 1, 2 \}$. Assume first that $i = j = 1$. Then \begin{equation} A_{i, 1} C_{j, 1} + A_{i, 2} C_{j, 2} = A_{1, 1} C_{1, 1} + A_{1, 2} C_{1, 2} = a d + b (-c) = ad - b c = \text{Det} A \end{equation} and \begin{equation} A_{1, i} C_{1, j} + A_{2, i} C_{2, j} = A_{1, 1} C_{1, 1} + A_{2, 1} C_{2, 1} = a d + c (-b) = ad - b c = \text{Det} A \end{equation} Assume next that $i = j = 2$. Then \begin{equation} A_{i, 1} C_{j, 1} + A_{i, 2} C_{j, 2} = A_{2, 1} C_{2, 1} + A_{2, 2} C_{2, 2} = c (-b) + d a = a d - b c = \text{Det} A \end{equation} and \begin{equation} A_{1, i} C_{1, j} + A_{2, i} C_{2, j} = A_{1, 2} C_{1, 2} + A_{2, 2} C_{2, 2} = b (-c) + d a = a d - b c = \text{Det} A \end{equation} Suppose then that $i = 1$ and $j = 2$. Then \begin{equation} A_{i, 1} C_{j, 1} + A_{i, 2} C_{j, 2} = A_{1, 1} C_{2, 1} + A_{1, 2} C_{2, 2} = a (-b) + b a = a b - a b = 0 \end{equation} and \begin{equation} A_{1, i} C_{1, j} + A_{2, i} C_{2, j} = A_{1, 1} C_{1, 2} + A_{2, 1} C_{2, 2} = a (-c) + c a = a c - ac = 0 \end{equation} Finally, suppose that $i = 2$ and $j = 1$. Then \begin{equation} A_{i, 1} C_{j, 1} + A_{i, 2} C_{j, 2} = A_{2, 1} C_{1, 1} + A_{2, 2} C_{1, 2} = c d + d (-c) = c d - c d = 0 \end{equation} and \begin{equation} A_{1, 2} C_{1, 1} + A_{2, 2} C_{2, 1} = b d + d (-b) = b d - bd = 0 \end{equation} Since all of the possible cases work out, the proof is complete. $\square$