ThmDex – An index of mathematical definitions, results, and conjectures.
Complex arithmetic expression for the determinant of a 2-by-2 complex square matrix
Formulation 0
Let $A \in \mathbb{C}^{2 \times 2}$ be a D6159: Complex square matrix such that
(i) \begin{equation} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{equation}
Then \begin{equation} \text{Det} A = a d - b c \end{equation}
Proofs
Proof 0
Let $A \in \mathbb{C}^{2 \times 2}$ be a D6159: Complex square matrix such that
(i) \begin{equation} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{equation}
The standard permutations in $S_2$ are $(1, 2)$ and $(2, 1)$. Result R5521: Signs of length-2 standard permutations shows that $\text{Sign}(1, 2) = 1$ and $\text{Sign}(2, 1) = -1$. Therefore, we have \begin{equation} \begin{split} \text{Det} A & = \sum_{\pi \in S_2} \left( \text{Sign}(\pi) \prod_{n = 1}^2 A_{n, \pi(n)} \right) \\ & = \text{Sign}(1, 2) A_{1, 1} A_{2, 2} + \text{Sign}(2, 1) A_{1, 2} A_{2, 1} \\ & = A_{1, 1} A_{2, 2} - A_{1, 2} A_{2, 1} \\ & = a d - b c \end{split} \end{equation} $\square$