ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2016 on D1719: Expectation
Probabilistic Markov's inequality
Formulation 0
Let $X \in \text{Random}[0, \infty]$ be a D5452: Random unsigned real number.
Let $\lambda > 0$ be a D993: Real number.
Then \begin{equation} \mathbb{P}(X \geq \lambda) \leq \frac{1}{\lambda} \mathbb{E}(X) \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to [0, \infty]$ is a D4381: Random basic number on $P$
Let $\lambda > 0$ be a D993: Real number.
Then \begin{equation} \mathbb{P}(X \geq \lambda) \leq \frac{1}{\lambda} \mathbb{E}_{\mathbb{P}} (X) \end{equation}
Formulation 2
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to [0, \infty]$ is a D4381: Random basic number on $P$
Let $\lambda > 0$ be a D993: Real number.
Then \begin{equation} \mathbb{P}(X \geq \lambda) \leq \frac{1}{\lambda} \int_{\Omega} X(\omega) \, \mathbb{P}(d \omega) \end{equation}
Proofs
Proof 0
Let $X \in \text{Random}[0, \infty]$ be a D5452: Random unsigned real number.
Let $\lambda > 0$ be a D993: Real number.
This result is a particular case of R1236: Markov's inequality. $\square$