ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Subset ▼ Power set ▼ Hyperpower set sequence ▼ Hyperpower set ▼ Hypersubset ▼ Subset algebra ▼ Subset structure ▼ Measurable space ▼ Measurable map ▼ Random variable ▼ Random number ▼ Random Euclidean number ▼ Random basic number
Definition D3161
Random real number

Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $M = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be the D5072: Standard real borel measurable space.
A D4364: Real function $X : \Omega \to \mathbb{R}$ is a random real number on $P$ if and only if $$\forall \, E \in \mathcal{B}(\mathbb{R}) : X^{-1}(E) \in \mathcal{F}$$

Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $M = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be the D5072: Standard real borel measurable space.
A D4364: Real function $X : \Omega \to \mathbb{R}$ is a random real number on $P$ if and only if $$\forall \, E \in \mathcal{B}(\mathbb{R}) : \{ X \in E \} \in \mathcal{F}$$

Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $M = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be the D5072: Standard real borel measurable space.
A D4364: Real function $X : \Omega \to \mathbb{R}$ is a random real number on $P$ if and only if $$\sigma_{\text{pullback}, M} \langle X \rangle \subseteq \mathcal{F}$$
Children
 ▶ Random rational number
Results
 ▶ R4754 ▶ Interval length upper bound to variance of bounded random real number