ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measurable map
Random variable
Class of random variables
Collection of random variables
Set of random variables
Random collection
Definition D2156
Adapted random collection
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P}, \{ \mathcal{G}_j \}_{j \in J})$ be a D1726: Filtered probability space such that
(i) $\{ X_j \}_{j \in J}$ is a D1721: Random collection on $P$
Then $\{ X_j \}_{j \in J}$ is an adapted random collection on $P$ if and only if \begin{equation} \forall \, j \in J : X_j \in \mathcal{G}_j \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P}, \{ \mathcal{G}_j \}_{j \in J})$ be a D1726: Filtered probability space such that
(i) $\{ X_j \}_{j \in J}$ is a D1721: Random collection on $P$
Then $\{ X_j \}_{j \in J}$ is an adapted random collection on $P$ if and only if \begin{equation} \forall \, j \in J : \sigma_{\text{pullback}} \langle X_j \rangle \subseteq \mathcal{G}_j \end{equation}
Formulation 2
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\{ \mathcal{G}_j \}_{j \in J}$ is a D3346: Sigma-algebra filtration for $\mathcal{F}$ on $P$
(ii) $\{ X_j \}_{j \in J}$ is a D1721: Random collection on $P$
Then $\{ (X_j, \mathcal{G}_j) \}_{j \in J}$ is an adapted random collection on $P$ if and only if \begin{equation} \forall \, j \in J : \sigma_{\text{pullback}} \langle X_j \rangle \subseteq \mathcal{G}_j \end{equation}
Formulation 3
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\{ \mathcal{G}_j \}_{j \in J}$ is a D3346: Sigma-algebra filtration for $\mathcal{F}$ on $P$
(ii) $\{ X_j \}_{j \in J}$ is a D1721: Random collection on $P$
Then $\{ (X_j, \mathcal{G}_j) \}_{j \in J}$ is an adapted random collection on $P$ if and only if \begin{equation} \forall \, j \in J : X_j \in \mathcal{G}_j \end{equation}