ThmDex – An index of mathematical definitions, results, and conjectures.
Result R5712 on D77: Set union
Partition of a binary set union
Formulation 0
Let $E$ and $F$ each be a D11: Set.
Then
(1) \begin{equation} E \cap (F \setminus E) = \emptyset \end{equation}
(2) \begin{equation} E \cup F = E \cup (F \setminus E) \end{equation}
Proofs
Proof 0
Let $E$ and $F$ each be a D11: Set.
For the first claim, we have \begin{equation} \begin{split} E \cap (F \setminus E) & = \{ x | x \in E \text{ and } x \in F \setminus E \} \\ & = \{ x | x \in E \text{ and } x \in F \text{ and } x \not\in E \} = \{ x \in F | x \in E \text{ and } x \not\in E \} = \emptyset \end{split} \end{equation} For the second claim, if $x \in E \cup F$, then $x \in E$, or $x \in F$, or both. If $x \in E$, then $x \in E \cup (F \setminus E)$ irrespective of whether $x \in F$ or $x \not\in F$ since $E$ is part of the union. If $x \in F$, but $x \not\in E$ then $x \in F \setminus E$ and therefore $x \in E \cup (F \setminus E)$ since $F \setminus E$ is part of the union. Since $x \in E \cup F$ was arbitrary, we have the inclusion $E \cup F \subseteq E \cup (F \setminus E)$.

In the other direction, if $x \in E \cup (F \setminus E)$, then $x \in E$ or $x \in F \setminus E$. The first claim showed that $E$ and $F \setminus E$ are disjoint, so we can't have the situation where $x$ belongs to both sets. If $x \in E$, then $x \in E \cup F$ since $E$ is part of the union. If $x \in F \setminus E$, then $x \in F$ and therefore $x \in E \cup F$ since $F$ is part of the union. Since $x \in E \cup (F \setminus E)$ was arbitrary, we have the inclusion $E \cup (F \setminus E) \subseteq E \cup F$.

Since we have inclusion in both directions, it follows that $E \cup F = E \cup (F \setminus E)$. $\square$