Let $X_1, \, \ldots, \, X_N \in \text{Random} \{ 0, 1 \}$ each be a
D3628: Random Boolean number such that
| (i) |
\begin{equation}
X_1 \overset{d}{=} \text{Bernoulli} (\theta_1), \quad \ldots, \quad
X_N \overset{d}{=} \text{Bernoulli} (\theta_N)
\end{equation}
|
| (ii) |
$X_1, \, \ldots, \, X_N$ is an D3842: Uncorrelated random collection
|
| (iii) |
\begin{equation}
\sum_{n = 1}^N \theta_n
= 1
\end{equation}
|
Then
| (1) |
\begin{equation}
\mathbb{E} \prod_{n = 1}^N X_n
\leq N^{-N}
\end{equation}
|
| (2) |
\begin{equation}
\mathbb{E} \prod_{n = 1}^N X_n
= N^{-N}
\quad \iff \quad
\theta_1 = \theta_2 = \cdots = \theta_N = \frac{1}{N}
\end{equation}
|