ThmDex – An index of mathematical definitions, results, and conjectures.
Result R5677 on D5407: Positive real number
Of all right triangles with a given perimeter, the isosceles triangle maximizes the area
Formulation 0
Let $a, b, \lambda \in (0, \infty)$ each be a D5407: Positive real number such that
(i) \begin{equation} a + b + \sqrt{a^2 + b^2} = \lambda \end{equation}
Then
(1) \begin{equation} \frac{1}{2} a b \leq \left( \frac{\lambda - \sqrt{a^2 + b^2}}{\sqrt{8}} \right)^2 \end{equation}
(2) \begin{equation} \frac{1}{2} a b = \left( \frac{\lambda - \sqrt{a^2 + b^2}}{\sqrt{8}} \right)^2 \quad \iff \quad a = b \end{equation}
Proofs
Proof 0
Let $a, b, \lambda \in (0, \infty)$ each be a D5407: Positive real number such that
(i) \begin{equation} a + b + \sqrt{a^2 + b^2} = \lambda \end{equation}
Since we have \begin{equation} \left( \frac{\lambda - \sqrt{a^2 + b^2}}{\sqrt{8}} \right)^2 = \frac{1}{2} \left( \frac{a + b}{2} \right)^2 \end{equation} this result is a direct corollary to R5209: Of all rectangles with a given perimeter, the square maximizes the area. $\square$