ThmDex – An index of mathematical definitions, results, and conjectures.
Result R4757 on D3042: Conjugate exponents
Young's inequality for two real numbers
Formulation 0
Let $x, y \in [0, \infty)$ each be an D4767: Unsigned real number.
Let $p, q \in (0, \infty)$ each be a D5407: Positive real number such that
(i) \begin{equation} \frac{1}{p} + \frac{1}{q} = 1 \end{equation}
Then
(1) \begin{equation} x y \leq \frac{x^p}{p} + \frac{y^q}{q} \end{equation}
(2) \begin{equation} x y = \frac{x^p}{p} + \frac{y^q}{q} \quad \iff \quad \frac{x^p}{p} = \frac{y^q}{q} \end{equation}
Proofs
Proof 0
Let $x, y \in [0, \infty)$ each be an D4767: Unsigned real number.
Let $p, q \in (0, \infty)$ each be a D5407: Positive real number such that
(i) \begin{equation} \frac{1}{p} + \frac{1}{q} = 1 \end{equation}
This result is a particular case of R1959: Young's inequality. $\square$