ThmDex – An index of mathematical definitions, results, and conjectures.
Result R4693 on D993: Real number
Lower bound to the product of duals of a finite collection of real numbers in the left-closed unit interval
Formulation 0
Let $x_1, \ldots, x_N \in [0, 1)$ each be a D993: Real number.
Then \begin{equation} \prod_{n = 1}^N (1 - x_n) \geq 1 - \sum_{n = 1}^N x_n \end{equation}
Proofs
Proof 0
Let $x_1, \ldots, x_N \in [0, 1)$ each be a D993: Real number.
We proceed by weak induction on $N$. The case $N = 1$ is trivially true with $1 - x_1 \geq 1- x_1$. The case $N = 2$ is also true since $x_1 x_2 \geq 0$ and thus \begin{equation} (1 - x_1) (1 - x_2) = 1 - x_2 - x_1 + x_1 x_2 \geq 1 - (x_1 + x_2) \end{equation} Suppose then that the claim holds for some $N \geq 2$. We have \begin{equation} \begin{split} \prod_{n = 1}^{N + 1} (1 - x_n) & = (1 - x_{N + 1}) \prod_{n = 1}^N (1 - x_n) \\ & \geq (1 - x_{N + 1}) \left( 1 - \sum_{n = 1}^N x_n \right) \\ & = 1 - \sum_{n = 1}^N x_n - x_{N + 1} \left( 1 - \sum_{n = 1}^N x_n \right) \\ & = 1 - \sum_{n = 1}^N x_n - x_{N + 1} + x_{N + 1} \sum_{n = 1}^N x_n \\ & \geq 1 - \sum_{n = 1}^{N + 1} x_n \end{split} \end{equation} since $x_{N + 1} \sum_{n = 1}^N x_n \geq 0$. That is, the claim thus holds in the case $N +1$ and therefore the result is now a consequence of R800: Proof by principle of weak mathematical induction. $\square$