ThmDex – An index of mathematical definitions, results, and conjectures.
Standard mollifier is an approximate identity for complex Lebesgue convolution
Formulation 0
Let $M = (\mathbb{R}^N, \mathcal{L}, \ell)$ be a D1744: Lebesgue measure space such that
(i) $\eta = \{ \eta_{\varepsilon} \}_{\varepsilon \in (0, \infty)}$ is a D138: Standard mollifier for $\mathbb{R}^N$
(ii) $f : \mathbb{R}^N \to \mathbb{C}$ is a D5633: P-integrable complex Borel function on $M$ for $p \in [1, \infty)$
Then \begin{equation} \lim_{\varepsilon \to \infty} \Vert \eta_\varepsilon * f - f \Vert_{L^p} = 0 \end{equation}