Let $G$ be a D22: Group such that
(i) | $E \subseteq G$ is a D78: Subset of $G$ |
(ii) | $E = \{ g \}$ is a D135: Singleton set |
(iii) | $\langle E \rangle$ is a D1301: Generated subgroup of $G$ with generator $E$ |
Then
\begin{equation}
\langle E \rangle
= \{ g^n : n \in \mathbb{Z} \}
\end{equation}