ThmDex – An index of mathematical definitions, results, and conjectures.
Real ordering is compatible with addition
Formulation 0
Let $P = (\mathbb{R}, {\leq})$ be the D1102: Ordered set of real numbers.
Let $x, y, z \in \mathbb{R}$ each be a D993: Real number such that
(i) \begin{equation} x \leq y \end{equation}
Then \begin{equation} x + z \leq y + z \end{equation}
Proofs
Proof 0
Let $P = (\mathbb{R}, {\leq})$ be the D1102: Ordered set of real numbers.
Let $x, y, z \in \mathbb{R}$ each be a D993: Real number such that
(i) \begin{equation} x \leq y \end{equation}
Since $x \leq y$, then two cases are possible: either $x = y$ or $x < y$. If $x = y$, then $x + z = y + z$ and thus $x + z \leq y + z$. The case $x < y$ is settled in R4227: Strict real ordering is compatible with addition. $\square$