Let $f : \mathbb{C} \to \mathbb{C}$ be a D4312: Complex polynomial function such that
(i) | $N \in \{ 1, 2, 3, \ldots \}$ is a D5094: Positive integer |
(ii) | $r_0, r_1, \ldots, r_N \in \mathbb{C}$ are each a D1207: Complex number |
(iii) | \begin{equation} r_N \neq 0 \end{equation} |
(iv) | \begin{equation} f(z) = \sum_{n = 0}^N r_n z^n \end{equation} |
Then
\begin{equation}
\exists \, \lambda_0, \lambda_1, \, \ldots, \, \lambda_N \in \mathbb{C} :
\forall \, z \in \mathbb{C} :
f(z) = \lambda_0 \prod^N_{n = 1} (z - \lambda_n)
\end{equation}