ThmDex – An index of mathematical definitions, results, and conjectures.
Absolute moment inherits finiteness from greater exponents for random complex number
Formulation 1
Let $Z \in \text{Random}(\mathbb{C})$ be a D4877: Random complex number such that
(i) $1 \leq q < p < \infty$ are each a D5407: Positive real number
(i) \begin{equation} \mathbb{E} |Z|^p < \infty \end{equation}
Then \begin{equation} \mathbb{E} |Z|^q < \infty \end{equation}
Formulation 2
Let $Z \in \text{Random}(\mathbb{C})$ be a D4877: Random complex number such that
(i) $p, q \in [1, \infty)$ are each a D5407: Positive real number
(ii) \begin{equation} p > q \end{equation}
(iii) \begin{equation} \mathbb{E} |Z|^p \in [0, \infty) \end{equation}
Then \begin{equation} \mathbb{E} |Z|^q \in [0, \infty) \end{equation}
Subresults
R5046: Absolute moment inherits finiteness from greater exponents for random real number
Proofs
Proof 0
Let $Z \in \text{Random}(\mathbb{C})$ be a D4877: Random complex number such that
(i) $1 \leq q < p < \infty$ are each a D5407: Positive real number
(i) \begin{equation} \mathbb{E} |Z|^p < \infty \end{equation}
Since $\mathbb{E} |Z|^p$ is finite, then so is its exponentiation $(\mathbb{E} |Z|^p)^{1 / p}$. Since $p > q$, result R3571: Random Lebesgue P-norm inherits finiteness from higher exponents now states that $(\mathbb{E} |Z|^q)^{1 / q}$ is also finite. Exponentiating this finite quantity by $q$, we find that $\mathbb{E} |Z|^q < \infty$. $\square$