Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space such that
| (i) | \begin{equation} \mu(X) < \infty \end{equation} |
| (ii) | $f : X \to \mathbb{C}$ is a D5148: Borel-measurable complex function on $M$ |
| (iii) | $1 \leq q < p \leq \infty$ |
| (iv) | \begin{equation} \left( \int_X |f|^p \, d \mu \right)^{1/p} < \infty \end{equation} |
Then
\begin{equation}
\left( \int_X |f|^q \, d \mu \right)^{1/q}
< \infty
\end{equation}
