ThmDex – An index of mathematical definitions, results, and conjectures.
Lebesgue P-norm inherits finiteness from higher exponents in the case of constant-bounded measure space
Formulation 3
Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space such that
(i) \begin{equation} \mu(X) < \infty \end{equation}
(ii) $f : X \to \mathbb{C}$ is a D5148: Borel-measurable complex function on $M$
(iii) $1 \leq q < p \leq \infty$
(iv) \begin{equation} \left( \int_X |f|^p \, d \mu \right)^{1/p} < \infty \end{equation}
Then \begin{equation} \left( \int_X |f|^q \, d \mu \right)^{1/q} < \infty \end{equation}
Formulation 4
Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space such that
(i) \begin{equation} \mu(X) < \infty \end{equation}
(ii) $f : X \to \mathbb{C}$ is a D5148: Borel-measurable complex function on $M$
(iii) $p, q \in [1, \infty]$ are each an D5237: Unsigned basic number
(iv) \begin{equation} p > q \end{equation}
(v) \begin{equation} \Vert f \Vert_p < \infty \end{equation}
Then \begin{equation} \Vert f \Vert_q < \infty \end{equation}
Proofs
Proof 0
Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space such that
(i) \begin{equation} \mu(X) < \infty \end{equation}
(ii) $f : X \to \mathbb{C}$ is a D5148: Borel-measurable complex function on $M$
(iii) $1 \leq q < p \leq \infty$
(iv) \begin{equation} \left( \int_X |f|^p \, d \mu \right)^{1/p} < \infty \end{equation}
Set \begin{equation} r := \frac{p}{q} \quad \text{ and } \quad s := \frac{p}{p - q} \end{equation} Since $p > q$, then $p - q > 0$ and \begin{equation} \frac{1}{r} + \frac{1}{s} = \frac{q + p - q}{p} = \frac{p}{p} = 1 \end{equation} Consider now the real functions $F, G : X \to \mathbb{R}$ given by \begin{equation} F(x) = |f(x)|^q \quad \text{ and } \quad G(x) = 1 \end{equation} Applying R82: Hölder's inequality with the conjugate exponents $r$ and $s$, one has \begin{equation} \begin{split} \int_X |f|^q \, d \mu = \Vert F G \Vert_{L^1} & \leq \Vert F \Vert_{L^r} \Vert G \Vert_{L^s} \\ & = \left( \int_X |f|^{p} \, d \mu \right)^{\frac{q}{p}} \left( \int_X \, d \mu \right)^{\frac{p - q}{p}} = \Vert F \Vert_{L^p}^q \mu(X)^{\frac{p - q}{p}} < \infty \end{split} \end{equation} Exponentiating both sides to power $1 / q$, we can then conclude \begin{equation} \left( \int_X |f|^q \, d \mu \right)^{1 / q} < \infty \end{equation} $\square$