ThmDex – An index of mathematical definitions, results, and conjectures.
Lebesgue outer measure under scaling
Formulation 0
Let $\mathbb{R}^d$ be a D816: Euclidean real Cartesian product.
Let $\mu^*$ be the D780: Lebesgue outer measure on $\mathbb{R}^d$.
Let $\lambda \in \mathbb{R} \setminus \{ 0 \}$.
Then \begin{equation} \forall \, E \subseteq \mathbb{R}^d : \mu^*(\lambda E) = |\lambda|^d \mu^*(E) \end{equation}
Proofs
Proof 0
Let $\mathbb{R}^d$ be a D816: Euclidean real Cartesian product.
Let $\mu^*$ be the D780: Lebesgue outer measure on $\mathbb{R}^d$.
Let $\lambda \in \mathbb{R} \setminus \{ 0 \}$.
Let $E \subseteq \mathbb{R}^d$. Let $\{ I_n \}_{n \in \mathbb{N}}$ be a countable covering for $E$ of open real $d$-intervals. Result R2987: Set covering of Euclidean real scaled set shows than then the collection of scaled intervals $\{ \lambda I_n \}_{n \in \mathbb{N}}$ is in turn a countable covering for $\lambda E$ of open real $d$-intervals. Results
(i) R1049: Lebesgue outer measure is outer measure
(ii) R1052: Lebesgue outer measure coincides with the volume function on real n-intervals
(iii) R1159: Euclidean volume function under scaling

now imply \begin{equation} \mu^*(\lambda E) \leq \mu^* \Big( \lambda \bigcup_{n \in \mathbb{N}} I_n \Big) \leq \sum_{n \in \mathbb{N}} \mu^*(\lambda I_n) = \sum_{n \in \mathbb{N}} \mathsf{Vol}(\lambda I_n) = |\lambda|^d \sum_{n \in \mathbb{N}} \mathsf{Vol}(I_n) \end{equation} Since $\{ I_n \}_{n \in \mathbb{N}}$ was an arbitrary covering of $E$, we may apply R1109: Antitonicity of infimum to extend the above inequality to the infimum element on the right hand side over all such coverings of $E$ to obtain \begin{equation} \mu^*(\lambda E) \leq |\lambda|^d \inf_{\substack{J_0, J_1, J_2, \dots \in \mathsf{POI}(\mathbb{R}^d) : \\ E \subseteq \bigcup_{n \in \mathbb{N}} J_n}} \sum_{n \in \mathbb{N}} \mathsf{Vol}(J_n) = |\lambda|^d \mu^*(E) \end{equation} We may now proceed to apply this inequality in turn to the scaled set $\frac{1}{\lambda} E$ to obtain an inequality in the opposing direction \begin{equation} \mu^*(E) = \mu^* \Big( \lambda \Big( \frac{1}{\lambda} E \Big) \Big) = \mu^* \Big( \frac{1}{\lambda} (\lambda E) \Big) \leq \frac{1}{|\lambda|^d} \mu^*(\lambda E) \end{equation} Multiplying both sides by the nonzero quantity $|\lambda|^d$ yields now $|\lambda|^d \mu^*(E) \leq \mu^*(\lambda E)$. An inequality in both directions was established, whence R1043: Equality from two inequalities for real numbers implies the equality $\mu^*(\lambda E) = |\lambda|^d \mu^*(E)$. This finishes the proof. $\square$