ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2933 on D4675: Real series
Isotonicity of countably infinite real summation
Formulation 0
Let $x, y : \mathbb{N} \to \mathbb{R}$ each be a D4685: Real sequence such that
(i) \begin{equation} \forall \, n \in \mathbb{N} : x_n \leq y_n \end{equation}
(ii) \begin{equation} \lim_{N \to \infty} \sum_{n = 0}^N x_n \neq \emptyset \neq \lim_{N \to \infty} \sum_{n = 0}^N y_n \end{equation}
Then \begin{equation} \lim_{N \to \infty} \sum_{n = 0}^N x_n \leq \lim_{N \to \infty} \sum_{n = 0}^N y_n \end{equation}
Formulation 1
Let $x, y : \mathbb{N} \to \mathbb{R}$ each be a D4685: Real sequence such that
(i) \begin{equation} \lim_{N \to \infty} \sum_{n = 0}^N x_n \neq \emptyset \neq \lim_{N \to \infty} \sum_{n = 0}^N y_n \end{equation}
Then \begin{equation} x \leq y \quad \implies \quad \sum_{n = 0}^{\infty} x_n \leq \sum_{n = 0}^{\infty} y_n \end{equation}
Proofs
Proof 0
Let $x, y : \mathbb{N} \to \mathbb{R}$ each be a D4685: Real sequence such that
(i) \begin{equation} \forall \, n \in \mathbb{N} : x_n \leq y_n \end{equation}
(ii) \begin{equation} \lim_{N \to \infty} \sum_{n = 0}^N x_n \neq \emptyset \neq \lim_{N \to \infty} \sum_{n = 0}^N y_n \end{equation}
Consider two sequences $S, T : \mathbb{N} \to \mathbb{R}$ such that $S_N : = \sum_{n = 0}^N x_n$ and $T_N : = \sum_{n = 0}^N y_n$. Since $x \leq y$, then result R1904: Isotonicity of finite real summation guarantees that \begin{equation} S_N = \sum_{n = 0}^N x_n \leq \sum_{n = 0}^N y_n = T_N \end{equation} for every $N \in \mathbb{N}$. Since both series are convergent, then both sequences $S$ and $T$ are convergent. Result R1906: Isotonicity of limits of real sequences therefore implies \begin{equation*} \lim_{N \to \infty} \sum_{n = 0}^N x_n = \lim_{N \to \infty} S_N \leq \lim_{N \to \infty} T_N = \lim_{N \to \infty} \sum_{n = 0}^N y_n \end{equation*} which is the desired outcome. $\square$