ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2871 on D3953: Schwartz function
Equivalent characterisations of a Schwartz function
Formulation 1
Let $\mathbb{R}^D$ be a D5630: Set of euclidean real numbers such that
(i) $f : \mathbb{R}^D \to \mathbb{C}$ is an D1493: Infinitely differentiable function
(ii) $\mathbb{N}^D \subseteq \mathbb{R}^D$ is a D5179: Set of euclidean natural numbers
Then the following statements are equivalent
(1) $f$ is a D3953: Schwartz function
(2) \begin{equation} \forall \, N \in \mathbb{N} : \forall \, \alpha \in \mathbb{N}^D : \lim_{|x| \to \infty} |x|^N \partial^{\alpha} f(x) = 0 \end{equation}
(3) \begin{equation} \forall \, N \in \mathbb{N} : \sup_{|\beta| \leq N} \Vert (1 + |x|^2)^N \partial^{\beta} f \Vert_{\infty} < \infty \end{equation}
(4) \begin{equation} \forall \, N \in \mathbb{N} : \sum_{|\beta| \leq n} \Vert (1 + |x|)^N \partial^{\beta} f \Vert_{\infty} < \infty \end{equation}
(5) \begin{equation} \forall \, \beta \in \mathbb{N}^D : \forall \, N \in \mathbb{N} : \partial^{\beta} f(x) = O(|x|^{-N}) \end{equation}
(6) \begin{equation} \forall \, \beta \in \mathbb{N}^D : \forall \, N \in \mathbb{N} : |x|^N \partial^{\beta} f(x) = O(1) \end{equation}