ThmDex – An index of mathematical definitions, results, and conjectures.
Euclidean real Fourier inversion theorem
Formulation 1
Let $M = (\mathbb{R}^N, \mathcal{L}, \ell)$ be a D1744: Lebesgue measure space such that
(i) $f : \mathbb{R}^N \to \mathbb{C}$ is an D1921: Absolutely integrable function on $M$
(ii) \begin{equation} \mathfrak{F}_f (\xi) : = \int_{\mathbb{R}^N} e^{- i 2 \pi x \cdot \xi} f(x) \, \ell(d x) \end{equation}
(iii) \begin{equation} \mathfrak{G}_f (\xi) : = \int_{\mathbb{R}^N} e^{- i x \cdot \xi} f(x) \, \ell(d x) \end{equation}
Then
(1) \begin{equation} \mathfrak{F} \in \mathfrak{L}^1(M) \quad \implies \quad \mathfrak{F}^{-1} (\mathfrak{F}_f) \overset{a.e.}{=} f \end{equation}
(2) \begin{equation} \mathfrak{G} \in \mathfrak{L}^1(M) \quad \implies \quad \mathfrak{G}^{-1} (\mathfrak{G}_f) \overset{a.e.}{=} \frac{1}{(2 \pi)^N} f \end{equation}