ThmDex – An index of mathematical definitions, results, and conjectures.
Proof P3247 on R4737:
P3247
Let $\omega \in \Omega$ be an outcome such that $X(\omega) \in E$. If $X(\omega) = Y(\omega)$, then also $Y(\omega) \in E$ and else $X(\omega) \neq Y(\omega)$. Since $\omega \in \Omega$ was arbitrary, we have the inclusion \begin{equation} \{ X \in E \} \subseteq \{ X \neq Y \} \cup \{ Y \in E \} \end{equation} We can now apply results
(i) R2090: Isotonicity of probability measure
(ii) R4739: Binary subadditivity of probability measure

to conclude \begin{equation} \begin{split} \mathbb{P}(X \in E) & \leq \mathbb{P}(X \neq Y \text{ or } Y \in E) & \leq \mathbb{P}(X \neq Y) + \mathbb{P}(Y \in E) \end{split} \end{equation} $\square$