ThmDex – An index of mathematical definitions, results, and conjectures.
P2504
Since we can write $x^{\lambda_n}_n = e^{\lambda_n \log x_n}$, we can apply results
(i) R3500: Homomorphism property of the standard natural real exponential function
(ii) R3567: Standard natural real exponential function is subconvex

to conclude \begin{equation} \begin{split} \prod_{n = 1}^N x_n^{\lambda_n} = \prod_{n = 1}^N e^{\lambda_n \log x_n} = \exp \left( \sum_{n = 1}^N \lambda_n \log x_n \right) \leq \sum_{n = 1}^N \lambda_n e^{\log x_n} = \sum_{n = 1}^N \lambda_n x_n \end{split} \end{equation} The second claim is a consequence of the above results together with the result R5181: Subconvex real function preserves convex combination iff convex combination elements are all equal. $\square$