Let $\mathbb{R}^N$ be a D816: Euclidean real Cartesian product such that
Let $a \in \mathbb{R}$ be a D993: Basic real number such that
(i) | $E \subseteq \mathbb{R}^N$ |
(ii) | $I_E$ is an D41: Indicator function on $\mathbb{R}^N$ with respect to $E$ |
(iii) | $x \in \mathbb{R}^N$ |
(i) | \begin{equation} a \neq 0 \end{equation} |
Using result R4587 and the definition of an indicator function, we have the chain of equivalencies
\begin{equation}
\begin{split}
I_E(a x) = 1 \quad & \iff \quad a x \in E \\
& \iff \quad x \in a^{-1} E \\
& \iff \quad I_{a^{-1} E}(x) = 1 \\
\end{split}
\end{equation}
whence the first claim follows as a consequence of R2965: Indicator function is uniquely identified by its support. The second claim follows by substituting $a^{-1} \neq 0$ in the place of $a$. $\square$