A
D1106: Topological space $T = (X, \mathcal{T})$ is a
Kolmogorov topological space if and only if
\begin{equation}
\forall \, x, y \in X
\left( x \neq y \quad \implies \quad \exists \, U \in \mathcal{T} : (x \in U, y \not\in U) \lor (x \not\in U, y \in U) \right)
\end{equation}